ON SHRINKING ARCS IN METRIC SPACES

BY
P. H. DOYLE(?)

ABSTRACT

By a sin (1/x)-curve is meant a metric continuum that is a 1-1 continuous
image of the disjoint union of an arc and a semi-open interval that has the
image of the arc as continuum of convergence. It is shown that if M is a com-
pact metric space, A — M an arc, while M/A4 is an arc having 4/4 as an
end-point, then M is an arc, a triod, some sin (1/x)-curve, or some sin (1/x)-
curve with an arc attached at one point, or some sin (1/x)-curve with two
arcs attached. The case of shrinking finitely many arcs is also considered in
an attaching theorem.

If M is a compact metric space, 2 an upper semicontinuous decomposition
of M, let X =M/2 and suppose n: M — X is the natural map.(?) We will examine
the case in which 2 has only finitely many nondegenerate elements that are arcs.
For X an arc, Theorem 1 describes the topological type of M where 2 has only
one arc element. In Theorem 2 this result is generalized to the case of finitely
many arcs. In the sequel M/A4 will denote the topological space obtained from
the topological space M by identifying the points of the subset A of M.

Lemma 1. Let M be a compact metric space and A< M a closed subset
such that X = M/[A is an arc with n(A) = @ as an end-point under the natural
mapn: M — X. Then M — AN A is a continuum.

Proof. The map 11|M A is a 1-1 map that is open and is thus a homeo-
morphlsm It follows that M — A4 is topologlcally the semiopen interval [0,1).
Thus M — 4 is a continuum with M — 4 — (M — 4) < A. So without loss of
generality one may assume that M = M —~ M — A and that A= (M — A) N A.

Let g:[0,1) > M — A be a homeomorphism of [0,1) onto M — A and define
Ci=g{[(k/k + 1),1)} U A for k=0,1,2,--,n,---. Then C; is a continuum and
N C,=A=M — AN Ais a continuum since C; > Cy 4.

THEOREM 1. M is a compact metric space and A<M is an arc. If X = M|A
is an arc with n(A) = w as an end-point under the natural map n:M — X, then
M is an arc, a triod , the union SU K of a sin (1/x) — curve S (0 <x < 1) and
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(2) The notation X = M/ is not commonly used and an upper semi-continuous decomposi-
tion of a space M is usually denoted by & . We prefer however to distinquish between the family $7
and the topological space 2 (denoted here by X = M/ D).
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the interval of convergence K = {(x,y),x =0, -1 < y £ 1}, the set SU K with
an arc attached at an end-point of the interval of convergence, or the set S U K
with two disjoint arcs so attached, one at each of the end-points of the interval
of convergence.(®)

Proof. By Lemma 1, C=M — AN A is a continuum and since 4 is an arc,
Cis a point or an arc. If C is a point, then M — A = (M — A4) u C is the 1-point
compactification of a half-open arc and is thus an arc. Hence M is a union of two
arcs M — A and A with the end-point C of M — A on A. Clearly M is an arc or
triod.

In case C is an arc, let its end-points be a and b. Since M — A is a semi-arc
and C=M—AnN A, one can represent M — A as a union of arcs 4, and
B,:M — A=|J:-,(4, U B,) where 4,=[a,b,] B, = [b,a,:,] n =12,
and a,, b, denote the end-points of these arcs. Moreover one can assume that
A,NnB,=(b,),B,N A, =(a,+,) and a,—a and b,—»b where a; is the
end-point of M ~ A(n(a,) + w). Then representing similarly a sin1/x-curve
S(0 < x £ 1) one can find a mapping of the interval K onto C obtaining a homeo-
morphism between S\U K and (M — A)U C. It follows that M — A4 is topo-
logically SU K. If C = A, M is (topologically) the set S U K. Otherwise there
are two cases. If C # A, C either lies in the interior of 4 or C has an end-point in
common with A. These two cases yield the last two values of M in Theorem 1.

In Theorem 1, there occur five different class counter-images of an arc.
We call this set of continua F. Suppose that M is a compact metric space, 4 = M
is an arc while X = M/A is an arc with 5(A) = w an interior point of X, Then X
is a union of two arcs X, and X,; X; N X, = w is an end-point of each. From
Theorem 1 we know that each of the spaces M; = ' (X,)(i = 1,2) is a member
of F,and M; N M, < A. Thus X is obtained by attaching members of F at points
of an arc.

Using the operation of attaching of two spaces by a function f one can prove
the following:

THEOREM 2. Let M be a compact metric space and 2 an upper semi-continuous
decomposition of M whose only non-degenerate elements are a finite number
of arcs A, Ay, Ap If X=M| D is an arc then M can be represented as a union
M,UM,U--UM, so that M;eF, i=12,--,n and M, U---UM,;,, is
obtained from M, U -+ UM, by attaching M;,, to M, U --- UM, by a conti-
nuous function f,i=1,2,n— 1.

The question what 1-dimensional continua can be decomposed into arcs and
points so that the hyperspace is a preassigned continuum may be of some interest.

(3) Here S \U K denotes any metric continuum that is a 1-1 continuous image of a semi-
open interval S and a disjoint arc K having X as continuum of convergence. We thank H. Davis
for this definition.
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It should perhaps be pointed out that a relationship exists between the obser-
vations made here and the cyclic element theory as presented in [1], [2], [3].
Though the continua we have considered here are not locally connected, Theorem 2
does provide us with a representation of a continuum analogous to the cyclic
chains. Links in the chain may or may not be locally connected in our case. The
development in [3] of the higher order cyclic element theory is actually carried
out for compact finite dimensional metric spaces.
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